Rownania Rozniczkowe, studia, Matma, Analiza Matematyczna
[ Pobierz całość w formacie PDF ]
Skryptpowstałnabaziewykładówzprzedmiotu„Równaniaróżniczkowe”,któreprowadzę
dla studentów drugiego semestru kierunku Automatyka i Robotyka na Wydziale Elektro
technikiiAutomatykiPolitechnikiGdańskiej.Programwykładówzostałdobranyzjednej
strony pod kątem przydatności w dalszym toku studiów na tym kierunku, a z drugiej
strony tak, aby istniała realna szansa jego realizacji czasie 30 godzin wykładu i takiej sa
mej ilości ćwiczeń. Dodatkowe ograniczenia w możliwości pełnej argumentacji niektórych
twierdzeń wynikają z faktu, że studenci drugiego semestru nie odbyli jeszcze całego kursu
analizy matematycznej.
Skrypt jest dostępny w formie elektronicznej na mojej stronie domowej (www.mif.pg.
gda.pl/homepages/graz). Na stronie tej zamieszczone są również programy komputerowe
ilustrujące niektóre przykłady zawarte w skrypcie. Programy te zostały napisane przez
studentów Matematyki Stosowanej w ramach prowadzonego przeze mnie laboratorium z
układów dynamicznych.
Wojciech Grąziewicz
W.Grąziewicz RÓWNANIA RÓŻNICZKOWE
3
Spis treści
1 Wiadomości wstępne z równań różniczkowych
5
1.1 Podstawowe definicje . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Interpretacja geometryczna równania rzędu pierwszego . . . . . . . . . . . . 13
2 Podstawowe typy równań różniczkowych zwyczajnych rzędu pierwszego 17
2.1 Równanie o zmiennych rozdzielonych . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 Równanie jednorodne . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Trajektorie ortogonalne . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Równanie różniczkowe liniowe rzędu pierwszego . . . . . . . . . . . . . . . . 26
2.2.1 Równanie Bernoulliego . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Równania różniczkowe wektorowe
34
3.1 Wiadomości wstępne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Twierdzenia o istnieniu i jednoznaczności . . . . . . . . . . . . . . . . . . . 38
3.3 Układy liniowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Macierz fundamentalna i jej własności . . . . . . . . . . . . . . . . . 53
3.3.2 Rezolwenta układu liniowego . . . . . . . . . . . . . . . . . . . . . . 57
3.3.3 Układy liniowe o stałych współczynnikach . . . . . . . . . . . . . . . 59
3.3.4
Metody wyznaczania macierzy
e
t
A
. . . . . . . . . . . . . . . . 62
4 Skalarne równania liniowe rzędu
n
75
4.1 Podstawowe definicje i twierdzenia . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Skalarne równania liniowe o stałych współczynnikach . . . . . . . . . . . . . 79
4.3 Rozwiązywanie niejednorodnych równań liniowych o stałych współczynni
kach metodą przewidywań . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Drgania liniowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Równanie Eulera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 Rozwiązywanie układów równań liniowych metodą eliminacji . . . . . . . . 96
4
W.Grąziewicz RÓWNANIA RÓŻNICZKOWE
5 Interpretacja dynamiczna układów równań różniczkowych
99
5.1 Trajektorie fazowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Całki pierwsze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6 Elementy teorii stabilności
115
6.1 Stabilność w sensie Lapunowa . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Stabilność układów liniowych o stałych współczynnikach . . . . . . . . . . . 118
6.3 Stabilność rozwiązań równania liniowego rzędu
n
. . . . . . . . . . . . . . . 124
6.4 Stabilność rozwiązań układów nieliniowych. . . . . . . . . . . . . . . . . . . 126
6.5 Funkcja Lapunowa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7 Przekształcenie Laplace’a
139
7.1 Definicja i podstawowe własności przekształcenia Laplace’a . . . . . . . . . 139
7.2 Przekształcenie odwrotne do przekształcenia Laplace’a . . . . . . . . . . . . 145
7.3 Zastosowanie przekształcenia Laplace’a do rozwiązywania równań różnicz
kowych. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.4 Splot funkcji i jego własności . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.5 Transformata oryginału okresowego . . . . . . . . . . . . . . . . . . . . . . . 152
W.Grąziewicz RÓWNANIA RÓŻNICZKOWE
5
1 Wiadomości wstępne z równań różniczkowych
1.1 Podstawowe definicje
Równaniaróżniczkowesątopewnegorodzajurównaniafunkcyjne,czylitakierównania,w
których niewiadomą jest funkcja. W równaniu różniczkowym niewiadoma funkcja wystę
pujepodznakiempochodnej.Jeżeliniewiadomajestfunkcjąjednejzmiennej,torównanie
nazywa się równaniem różniczkowym zwyczajnym. Na przykład równania
y
′
+
x
2
y
=sin
x, y
′′
+2
yy
′
−
y
′
2
=0
...
. Rząd najwyższej pochodnej występującej w
równaniunazywasięrzędemrównania.Pierwszeztychrównańjestrównaniemróżniczko
wymzwyczajnymrzędupierwszego,adrugierównaniemrzędudrugiego.Jeżeliwrównaniu
występuje funkcja dwóch lub więcej zmiennych oraz jej pochodne cząstkowe pierwszego
lubwyższychrzędów,totakierównanienazywasięrównaniemróżniczkowymcząstkowym.
Równanie
′
, y
′′
∂
2
u
∂t
2
=0
,
w którym niewiadomą funkcją jest funkcja
u
=
u
(
x,t
)
,
jest przykładem równania róż
niczkowego cząstkowego rzędu drugiego. Tutaj zajmować się będziemy tylko równaniami
różniczkowymi zwyczajnymi.
∂
2
u
∂x
2
−
1
a
2
Niech dana będzie funkcja
F
:
D
−→
R, gdzie
D
⊂
R
n
+2
. Równanie
F
(
x,y,y
′
,y
′′
,...,y
(
n
)
)=0
,
(1)
nazywamy równaniem różniczkowym zwyczajnym rzędu
n
w postaci
ogólnej.
Jeżeliz rów
nania (1) można wyznaczyć
y
(
n
)
przy pomocy pozostałych zmiennych, to otrzymamy
związek
y
(
n
)
=
f
(
x,y,y
′
,...,y
(
n
−
1)
)
,
(2)
który nazywamy równaniem różniczkowym zwyczajnym rzędu
n
w postaci
normalnej.
Weźmy pod uwagę następujące równanie:
y
′
=
x
2
.
Poszukujemy funkcji
y
=
y
(
x
), której pochodna jest równa
x
2
. Takich funkcji jest oczy
wiście nieskończenie wiele. Każda z funkcji postaci
y
(
x
)=
1
3
x
3
+
C, C
∈
R
,
sąrównaniamiróżniczkowymizwyczajnymi.Równaniatewiążązmiennąniezależną
x
,nie
wiadomą funkcję
y
i jej pochodne
y
[ Pobierz całość w formacie PDF ]
Tematy
- Indeks
- Rozp.Min.Infr.w.spr.zm.rozp.zm.rozp.w.spr.for.i.zak.proj.bud 17.12.2008, Studia, Polibuda Politechnika Warszawska, Budownictwo, Budownictwo
- Rynek finansowy - sektor bankowy, STUDIA, rynek finansowy - kapitałowy
- Rozp.Min.Infr.zm.rozp.w.spr.WT.(Dz.U.Nr.201.poz.1238) 06.11.2008, Studia, Polibuda Politechnika Warszawska, Budownictwo, Budownictwo
- rynek finansowy 98 01, studia magisterskie, międzynarodowy rynek finansowy
- Rozporządzenie Ministra Środowiska Dz.U. z 2007 r. Nr 86 Poz. 579, Studia PG, Semestr 06, Budownictwo Wodne i Morskie, Budownictwo Wodne
- Rola tlenku azotu w biologii roślin, Studia PŁ, Ochrona Środowiska, Ochrona przyrody, zagrożenia cywilizacyjne i zrównoważony rozwój, prezentacja tlenki azotu
- rodzina w sercu europy, Praca socjalna, studia - pr soc, soc rodziny
- Rozwój badań w pielęgniarstwie - Kopia, studia pielęgniarstwo, badania w pielęgniarstwie
- ROZPORZADZENIE MF z dnia 22 grudnia 2011 r. w sprawie obowiazkowego ubezpieczenia odpowiedzialnosci cywilnej podmiotu wykonujacego działalnosć lecznicza, Szkoła, studia, dentysta
- rynek kapitwlowy 2, STUDIA, rynek finansowy - kapitałowy
- zanotowane.pl
- doc.pisz.pl
- pdf.pisz.pl
- acapella.keep.pl